Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(24): e2300550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37069480

RESUMO

The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious microprocessing techniques. Here, the development of an inkjet printable formulation of polyelectrolyte is reported, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process and is used in the production of free-standing OEIPs on flexible polyimide (PI) substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and the ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by the transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve blocking, highlighting the applicability of these technologies for biomedical scenarios.


Assuntos
Eletrônica , Microtecnologia , Polieletrólitos , Sistemas de Liberação de Medicamentos , Íons/metabolismo , Bombas de Íon , Preparações Farmacêuticas
2.
Small ; 15(43): e1902189, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513355

RESUMO

Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 µm scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plant's tolerance to stress, induces closure of stomata, the microscopic pores in leaf's epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.


Assuntos
Ácido Abscísico/farmacologia , Eletrônica , Bombas de Íon/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , /efeitos dos fármacos
3.
Front Chem ; 7: 484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355181

RESUMO

In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.

4.
ACS Appl Mater Interfaces ; 11(15): 14200-14207, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30916937

RESUMO

Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple "one-pot" fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including "large" substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels' fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.


Assuntos
Eletrônica , Eletrônica/instrumentação , Eletroforese , Glicerol/química , Íons/química , Íons/metabolismo , Polímeros/química
5.
Proc Natl Acad Sci U S A ; 114(18): 4597-4602, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420793

RESUMO

The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Eletrônica , Ácidos Indolacéticos/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Bombas de Íon , Fenômenos Fisiológicos Vegetais/genética , Plantas Geneticamente Modificadas/genética , Plântula/genética
6.
Biomaterials ; 55: 96-109, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934455

RESUMO

Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais/citologia , Dióxido de Silício/química , Titânio/química , Materiais Biocompatíveis/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Separação Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanoestruturas/química , Porosidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Propriedades de Superfície
7.
Opt Express ; 21 Suppl 1: A157-66, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389267

RESUMO

The performance enhancement of polycrystalline Si solar cells by using an optimized discrete multilayer anti-reflection (AR) coating with broadband and omni-directional characteristics is presented. Discrete multilayer AR coatings are optimized by a genetic algorithm, and experimentally demonstrated by refractive-index tunable SiO2 nano-helix arrays and co-sputtered (SiO2)x(TiO2)1₋x thin film layers. The optimized multilayer AR coating shows a reduced total reflection, leading to the high incident-photon-to-electron conversion efficiency over a correspondingly wide range of wavelengths and incident angles, offering a very promising way to harvest more solar energy by virtually any type of solar cells for a longer time of a day.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Refratometria/instrumentação , Espalhamento de Radiação , Dióxido de Silício/química , Energia Solar , Luz Solar , Teste de Materiais , Óptica e Fotônica , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 4(11): 6295-301, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23116359

RESUMO

Nanoporous coatings have become the subject of intense investigation, in part because they have been shown to have unique and tailorable physical properties that can depart greatly from their dense or macroscopic counterparts. Nanoporous coatings are frequently fabricated utilizing oblique-angle or glancing-angle physical vapor-phase deposition techniques. However, a significant limitation for such coatings exists; they are almost always deposited on smooth and rigid planar substrates, such as silicon and glass. This limitation greatly constrains the applicability, tailorability, functionality and even the economic viability, of such nanoporous coatings. Here, we report our findings on nanoporous/polymer composite systems (NPCS) fabricated by utilizing oblique-angle electron-beam methodology. These unique composite systems exhibit several favorable characteristics, namely, (i) fine-tuned control over coating nanoporosity and thickness, (ii) excellent adhesion between the nanoporous coating and polymer substrate, (iii) the ability to withstand significant and repeated bending, and (iv) the ability to be molded conformably on two and three-dimensional surfaces while closely retaining the composite system's designed nanoporous film structure and, hence, properties.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Adesividade , Adsorção , Módulo de Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
9.
J Nanosci Nanotechnol ; 12(5): 3950-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852330

RESUMO

Oblique-angle deposition of indium tin oxide (ITO) is used to fabricate optical thin-film coatings with a porous, columnar nanostructure. Indium tin oxide is a material that is widely used in industrial applications because it is both optically transparent and electrically conductive. The ITO coatings are fabricated, using electron-beam evaporation, with a range of deposition angles between 0 degrees (normal incidence) and 80 degrees. As the deposition angle increases, we find that the porosity of the ITO film increases and the refractive index decreases. We measure the resistivity of the ITO film at each deposition angle, and find that as the porosity increases, the resistivity increases superlinearly. A new theoretical model is presented to describe the relationship between the ITO film's resistivity and its porosity. The model takes into account the columnar structure of the film, and agrees very well with the experimental data.

10.
Opt Express ; 18 Suppl 4: A594-9, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21165093

RESUMO

Optical interference filters utilizing tunable refractive index layers are shown to have higher spectral fidelity as compared to conventional filters consisting of non-tunable refractive index layers. To demonstrate this increase in spectral fidelity, we design and compare a variety of optical interference filters employing both tunable and non-tunable refractive index layers. Additionally, a five-layer optical interference filter utilizing tunable refractive index layers is designed and fabricated for use with a Xenon lamp to replicate the Air Mass 0 solar irradiance spectrum and is shown to have excellent spectral fidelity.

11.
Opt Lett ; 34(6): 728-30, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19282913

RESUMO

An optimized graded-refractive-index (GRIN) antireflection (AR) coating with broadband and omnidirectional characteristics--as desired for solar cell applications--designed by a genetic algorithm is presented. The optimized three-layer GRIN AR coating consists of a dense TiO2 and two nanoporous SiO2 layers fabricated using oblique-angle deposition. The normal incidence reflectance of the three-layer GRIN AR coating averaged between 400 and 700 nm is 3.9%, which is 37% lower than that of a conventional single-layer Si3N4 coating. Furthermore, measured reflection over the 410-740 nm range and wide incident angles 40 degrees -80 degrees is reduced by 73% in comparison with the single-layer Si3N4 coating, clearly showing enhanced omnidirectionality and broadband characteristics of the optimized three-layer GRIN AR coating.

12.
Opt Lett ; 33(21): 2527-9, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18978909

RESUMO

To harness the full spectrum of solar energy, Fresnel reflection at the surface of a solar cell must be eliminated over the entire solar spectrum and at all angles. Here, we show that a multilayer nanostructure having a graded-index profile, as predicted by theory [J. Opt. Soc. Am. 66, 515 (1976); Appl. Opt. 46, 6533 (2007)], can accomplish a near-perfect transmission of all-color of sunlight. An ultralow total reflectance of 1%-6% has been achieved over a broad spectrum, lambda = 400 to 1600 nm, and a wide range of angles of incidence, theta = 0 degrees-60 degrees . The measured angle- and wavelength-averaged total reflectance of 3.79% is the smallest ever reported in the literature, to our knowledge.

13.
Opt Express ; 16(8): 5290-8, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18542630

RESUMO

Designs of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials are optimized using a genetic algorithm. Co-sputtered and low-refractive-index materials allow the fine-tuning of refractive index, which is required to achieve optimum anti-reflection characteristics. The algorithm minimizes reflection over a wide range of wavelengths and incident angles, and includes material dispersion. Designs of antireflection coatings for silicon-based image sensors and solar cells, as well as triple-junction GaInP/GaAs/Ge solar cells are presented, and are shown to have significant performance advantages over conventional coatings. Nano-porous low-refractive-index layers are found to comprise generally half of the layers in an optimized antireflection coating, which underscores the importance of nano-porous layers for high-performance broadband and omnidirectional antireflection coatings.


Assuntos
Algoritmos , Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Refratometria/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...